
 Chapter 16: Random access files 453

16 Random access files

When a program runs, a set of data can be loaded from disc into the electronic main memory of the

computer. Here it can be sorted, searched or updated, and any changes saved back to the disc file.

In previous projects we have been largely working with data in electronic memory, using either

arrays or objects as temporary storage for our data. This approach has considerable advantages, as

the processing of a set of records can be thousands of times faster in the electronic main memory

than if data has to be constantly accessed from a disc file using slow read and write operations.

Sometimes, however, the amount of data being handled is too large to all be held in the main

memory at once. A system may handle many thousands or even millions of records. Examples of

such large systems might include Government Social Security records, Driver and Vehicle Licensing

records, customers' policy records for a large Insurance Company, or product records for a major

Supermarket chain. In these situations, the program must directly access individual records from

the disc file during processing.

A major problem for this type of system is that disc operations are slow, due to the limited speed

with which the mechanical components of the disc drive can move to access particular records. For

a disc based system to work efficiently, the number of disc operations must be kept to an absolute

minimum. When reading a record from disc, we need to know its likely location on the disc so that it

can be loaded in a single operation. Access will be slow if it is necessary to check many different

locations on the disc before finding the required record. In this and the next chapter we will look at

two systems which have been developed to provide fast access to particular records on disc:

random access files and indexed sequential files.

electronic main

memory

program

program

processing

of data

disc file load

re-save after

processing

processing

of data

disc file

454 Java Programming for A-level Computer Science

Random access files

The clever idea of random access files is to take a value from each record and convert this into a file

location by some mathematical process. For example:

Suppose that a particular stock record contains a product code with the value 69764. A

mathematical process could be devised which always converts this number into some

other small value such as 49. The record would be stored in the calculated file location,

49. When the record needs to be accessed, the required product code is input to the

same mathematical process, and the number 49 is again calculated. It should then be

possible to go directly to location 49 to obtain the record.

The mathematical process used by a random access file system is called a hash function. Many

different mathematical processes could be used, but a convenient method is to find the remainder

after division. This can be calculated easily by means of the Java MOD function.

Suppose that a shop expects to stock a maximum of 1000 different products. A random

access file system could be set up using 1000 memory locations, numbered 0 – 999.

Stock items may have six digit product codes, such as 389231.

A suitable hash function for calculating the storage location for any product would be:

 <product code> MOD 1000

The remainder after dividing 389231 by 1000 will be 231, so the product with stock code

389231 is stored at location 231.

You may have spotted a potential problem with this system. Other stock codes, for example 461231

or 788231, would also generate the same value of 231 when the hash function is applied. If two

records generate the same hash value, it is said that a collision has occurred. Collisions are quite rare

if the random access file is created with at least one third more memory locations than the expected

maximum number of records to be stored. However, collisions can still occur, and a strategy is

needed for dealing with these.

mathematical

process always

converts 69764

into 49

record with

product code

69764

record with

product code

69764 is wanted

SAVING

SEARCHING

store at

location 49

search at

location 49

 Chapter 16: Random access files 455

In this chapter we will set up a random access file system to handle product records for an on-line

book, music and electronic entertainment store. The store stocks approximately 600 different items,

and each has been given a six digit stockID number. We will explore how records can be saved into a

disc file, accessed from disc, and collisions handled by the system.

Begin the project in the standard way. Close all previous projects, then set up a New Project. Give

this the name randomAccess, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the randomAccess project, and select New /

JFrame Form. Give the Class Name as randomAccess, and the Package as randomAccessPackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Click the Design tab to move to the form layout view. Add a Menu Bar component. Right-click

on the menu items and change the text entries to 'Add record' and 'Find record'. Rename the

menu items as menuAddRecord and menuFindRecord.

Go to the Projects window at the top left of the editing screen and right-click on the

randomAccessPackage folder. Select New / JFrame Form. Give the Class Name as addRecord,

and leave the Package name as randomAccessPackage.

456 Java Programming for A-level Computer Science

Click the Finish button to return to the editing screen. The new addRecord form should appear.

 Right-click on the form and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Set the defaultCloseOperation property to 'HIDE'.

Return to the Projects window and again right-click on the randomAccessPackage folder. Select

New / JFrame Form to create another blank form. Give the Class Name as findRecord, and leave

the Package name as randomAccessPackage. Click the Finish button to create the form.

Choose the options Set layout / Absolute layout, Form Size Policy / Generate pack() / Generate

Resize code and defaultCloseOperation/ 'HIDE'.

Click the tab at the top of the editing screen to open the randomAccess.java form. Select the

'Add record' menu option. Go to the Properties window and click on the Events tab. Locate the

mouseClicked event and accept menuAddRecordMouseClicked from the drop down list.

Add a line of code to the mouseClicked method to open the addRecord form.

 private void menuAddRecordMouseClicked(java.awt.event.MouseEvent evt) {

 new addRecord().setVisible(true);

 }

Click the Design tab to return to the form layout view, then repeat the procedure to produce a

mouseClicked method for the 'Find record' menu item. Add a line of code to open the

findRecord form.

 private void menuFindRecordMouseClicked(java.awt.event.MouseEvent evt) {

 new findRecord().setVisible(true);

 }

Run the program. Check that 'Add record' and 'Find record' windows can be opened by clicking

the menu items. Check also that these windows can be closed without exiting from the main

program.

 Chapter 16: Random access files 457

Close the program and return to the NetBeans editing screen. Use the tab to move to the

addRecord.java page. Add components to the form to allow product records to be input:

 A label with the caption 'Add record'

 A label with the caption 'Product code'. Place a text field alongside and rename this as

txtProductCode.

 A label with the caption 'Category'. Place a Combo Box alongside and rename this as

cmbCategory.

 A label with the caption 'Title / description'. Place a text field alongside and rename this

as txtDescription.

 A button with the caption 'Add record'. Rename the button as btnAdd.

Select the cmbCategory combo box. Go to the Properties window and locate the model

property. Click the ellipsis (…) symbol at the end of the row to open an editing window. Add

the items for the drop down list: Books, Music, Films and Games.

Click the OK button to return to the form layout view.

458 Java Programming for A-level Computer Science

Use the Source tab to move to the program code screen. Add Java the modules at the start of the
program listing which will be needed for file handling and to produce a message box.

package randomAccessPackage;

import java.io.IOException;
import java.io.RandomAccessFile;
import javax.swing.JOptionPane;

public class addRecord extends javax.swing.JFrame {

Click the Design tab to return to the form layout view. Double click the 'Add record' button to create
a method. Add the line of code to call an addRecord() method, then begin the method immediately
underneath. We will begin by checking that the product code entered has a correct length of six
characters. Please note that the line beginning
 'JOptionPane.showMessageDialog(…'
should be entered as a single line of code with no line break.

 private void btnAddActionPerformed(java.awt.event.ActionEvent evt) {

 addRecord();

 }

 private void addRecord()
 {
 String productCodeEntered=txtProductCode.getText().trim();
 if (productCodeEntered.length()!=6)
 {
 JOptionPane.showMessageDialog(addRecord.this,
 "The product code must be six digits");
 }
 }

Run the program. Select the 'Add record' menu option. Check that an error message appears if the
Product code entered does not have a length of six characters.

Close the program windows and return to the NetBeans editing screen.

Before developing the program further, we will set up a data class file to store global variables which
will be needed by several of the program forms.

 Chapter 16: Random access files 459

Locate the randomAccessPackage folder in the Project window at the top left of the screen. Right-

click on randomAccessPackage and select New / Java Class. Set the Class Name as data. Leave the

Package name as randomAccessPackage.

Click the Finish button to open the data class file. Add a variable fileLocations which will record the
number of record storage locations which will be allocated on disc for the random access file. We
will also assign a name for the disc file.

package randomAccessPackage;

public class data {

 public static int fileLocations;
 public static String filename = "randomAccess.dat";

}

When the program begins, we must initialise the number of storage locations in the random access
file. Use the tab above the editing screen to move to the randomAccess.java page. Add a line of
code to the randomAccess() method to set the initial number of storage locations to 10.

package randomAccessPackage;

public class randomAccess extends javax.swing.JFrame {

 public randomAccess() {
 initComponents();

 data.fileLocations=10;

 }

Use the tab to return to the addRecord.java page.

Locate the addRecord() method which you were developing earlier. We will now use the
product code to calculate the file location where the record should be stored, using the formula:

 <product code> MOD <number of file locations>

460 Java Programming for A-level Computer Science

Add a call to a function getHashValue() which will carry out the calculation and return the number
of the file location where the record should be stored. This function should be inserted immediately
below the addRecord() method. The line beginning 'JOptionPane.showMessageDialog(…' should
be entered as a single line of code with no line break.

 private void addRecord()
 {

 String productCodeEntered=txtProductCode.getText().trim();
 if (productCodeEntered.length()!=6)
 {
 JOptionPane.showMessageDialog(addRecord.this,
 "The product code must be six digits");
 }

 else
 {
 int n=getHashValue(productCodeEntered);
 }

 }

 private int getHashValue(String productCode)
 {
 int hashValue=-1;
 try
 {
 long code=Long.parseLong(productCode);
 hashValue = (int) (code % data.fileLocations);
 }
 catch (NumberFormatException e)
 {
 JOptionPane.showMessageDialog(addRecord.this,
 "Incorrect number format");
 }
 return hashValue;
 }

We have included error trapping, in case the product code which is entered contains non-numeric
characters. Run the program. Go to the 'Add record' page. Enter a product code containing one or
more letters, and check that the error is detected.

Close the program windows and return to the NetBeans editing screen.

 Chapter 16: Random access files 461

Before saving the record, we must set up the structure on disc for the random access file. Use the
tab above the editing screen to move to the randomAccess.java page. We will add sections of code:

 At the start of the program listing, include the Java modules which will be needed for file
handling.

 Add a block of code to the randomAccess() method which will check whether the random
access file already exists on the disc. If not, it calls a method to create the file.

 Include the createFile() method immediately underneath the randomAccess() method. The
createFile() method uses a loop to create the required number of blank storage locations.
We are allowing a fixed length of 100 bytes for each storage location.

package randomAccessPackage;

import java.io.File;
import java.io.IOException;
import java.io.RandomAccessFile;
import javax.swing.JOptionPane;

public class randomAccess extends javax.swing.JFrame {

 public randomAccess() {
 initComponents();
 data.fileLocations=10;

 File f = new File(data.filename);
 if(f.exists()==false)
 {
 createFile();
 }

 }

 private void createFile()
 {
 try (RandomAccessFile file = new RandomAccessFile(data.filename, "rw"))
 {
 data.fileLocations=10;
 String s = "locations "+data.fileLocations;
 file.write(s.getBytes());
 for (int i=0; i<data.fileLocations; i++)
 {
 String locationNumber=String.format("%-4s", i);
 s = "***"+locationNumber+"** ";
 int position=i*100+15;
 file.seek(position);
 file.write(s.getBytes());
 }
 file.close();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(randomAccess.this, "File error");
 }
 }

462 Java Programming for A-level Computer Science

Run the program. Use Windows Explorer to locate the file randomAccess.dat in the randomAccess
project folder. Open the file with a text editing application such as Notepad. Check that the file
contains a message giving the number of storage locations, followed by the correct number of blank
fixed length records.

Close the program and return to the NetBeans editing screen. As we test the random access file, it
will be more convenient if the contents of the file are displayed on the program screen, rather than
having to keep opening the file in a separate application. We will set up a display method on the
main program page.

Use the Design tab to move to the form layout view. Add a text area component, giving this the
name txtOutput. Insert a button below the text area, with the caption 'Refresh file display'.
Rename the button as btnRefresh.

Double click the 'Refresh file display' button to create a method.

 Chapter 16: Random access files 463

Add a line of code to the button click method to call a displayFile() method. Insert displayFile()
immediately below the button click method. This method uses a loop to access each of the records
from the random access file, then adds each record to the text string which is output.

 private void btnRefreshActionPerformed(java.awt.event.ActionEvent evt) {

 displayFile();

 }

 private void displayFile()
 {
 int position;
 String output="";
 byte[] bytes;
 try
 {
 RandomAccessFile file = new RandomAccessFile(data.filename, "r");
 bytes = new byte[15];
 file.read(bytes);
 String s=new String(bytes);
 output += s+"\n";
 s=s.substring(10);
 data.fileLocations=Integer.parseInt(s.trim());
 for (int i=0; i<data.fileLocations; i++)
 {
 position=i*100 + 15;
 file.seek(position);
 bytes = new byte[100];
 file.read(bytes);
 s=new String(bytes);
 output += s+"\n";
 }
 file.close();
 txtOutput.setText(output);
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(randomAccess.this, "File error");
 }
 }

Scroll up to the top of the program listing and add a line at the end of the randomAccess() method
to call the displayFile() method when the program first runs.

 public randomAccess() {
 initComponents();
 data.fileLocations=10;
 File f = new File(data.filename);
 if(f.exists()==false)
 {
 createFile();
 }
 f = new File(data.overflow);
 if(f.exists()==false)
 {
 createOverflow();
 }

 displayFile();

 }

464 Java Programming for A-level Computer Science

Run the program. Check that the set of blank records is displayed in the text area. Notice that the
locations are numbered 0 to 9, which are the possible remainder values when a product code is
divided by 10.

Close the program window and return to the NetBeans editing screen. We are now ready to

save product records into the file. Click the tab to return to the addRecord.java page and locate

the addRecord() method. We will add code to carry out a series of tasks:

 We check to make sure that a valid product code has been entered, and a hash value n

has been calculated.

 The product data is assembled into a fixed length record. The product code is given a

field length of 10 bytes, the category is 10 bytes and the title/description is 70 bytes.

 The file location n is used to calculate the position in the file where the record will be

stored.

 private void addRecord()
 {
 String productCodeEntered=txtProductCode.getText().trim();
 if (productCodeEntered.length()!=6)
 {
 JOptionPane.showMessageDialog(addRecord.this,
 "The product code must be six digits");
 }
 else
 {
 int n=getHashValue(productCodeEntered);

 if (n>=0)
 {
 int position;
 String category =(String) cmbCategory.getSelectedItem();
 String description=txtDescription.getText();
 productCodeEntered=String.format("%-10s", productCodeEntered);
 category=String.format("%-10s", category);
 description=String.format("%-70s", description);
 String productRecord=productCodeEntered+category+description;
 productRecord=productRecord.substring(0, 90);
 try(RandomAccessFile file = new RandomAccessFile(data.filename, "rw"))
 {
 position=100*n + 25;
 file.seek(position);
 file.write(productRecord.getBytes());
 file.close();
 JOptionPane.showMessageDialog(addRecord.this, "Record saved");
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(addRecord.this, "File error");
 }
 txtProductCode.setText("");
 txtDescription.setText("");
 }
 }
 }

 Chapter 16: Random access files 465

Run the program. Select the 'Add record' menu option. Enter the details of a product sold by the

on-line store, then click the 'Add record' button.

Move to the main program window and click the 'Refresh file display' button. Check that the

record which you have entered is displayed in the correct storage location, representing the

remainder when the product code is divided by 10.

Enter further records, each time refreshing the file display.

All seems to go well until a record is entered which generates the same hash value as an exiting

record in the file, as in the case of 672297 and 813387. The earlier record is then overwritten.

466 Java Programming for A-level Computer Science

Close the program windows and return to the NetBeans editing screen. We must now develop a

strategy to handle collisions. A simple solution is to provide an unsorted overflow file where records

can be stored if the required location in the main file is already occupied.

Use the tab above the editing window to move to the data.java class file. Add a name for the

overflow file.

public class data {

 public static int fileLocations;
 public static String filename = "randomAccess.dat";

 public static String overflow = "overflow.dat";

}

Click the tab to move to the randomAccess.java page. Add lines of code to the randomAccess()
method which will check whether an overflow file already exists. If not, a method createOverflow()
will be called. Insert this method immediately below the randomAccess() method.

 public randomAccess() {
 initComponents();
 data.fileLocations=10;
 File f = new File(data.filename);
 if(f.exists()==false)
 {
 createFile();
 }

 f = new File(data.overflow);
 if(f.exists()==false)
 {
 createOverflow();
 }

 }

 private void createOverflow()
 {
 try (RandomAccessFile file = new RandomAccessFile(data.overflow, "rw"))
 {
 file.setLength(0);
 file.close();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(randomAccess.this, "File error");
 }
 }

Run the program. Use Windows Explorer to check that an empty overflow.dat file has been created

in the randomAccess project folder.

Close the program window and return to the NetBeans editing screen.

 Chapter 16: Random access files 467

We can now work on the storage of records in the overflow area when collisions occur.

Click the tab above the editing screen to return to the addRecord.java page. Locate the

addRecord() method.

We will need to add extra code to fully implement our strategy for handling collisions:

 Input the product code

 Use the hash function to calculate the storage location in the main file

 Check whether this location is already occupied

 IF location is not occupied THEN store the new record in the main file

 ELSE store the new record in the overflow area.

We will firstly add the lines of code necessary to check whether the required location in the main file

is already occupied. The program will open the random access file and return any product code

found at that location.

private void addRecord()

 {

 String productCodeEntered=txtProductCode.getText().trim();

 if (productCodeEntered.length()!=6)

 {

 JOptionPane.showMessageDialog(addRecord.this,

 "The product code must be six digits");

 }

 else

 {

 int n=getHashValue(productCodeEntered);

 if (n>=0)

 {

 int position;

 String category =(String) cmbCategory.getSelectedItem();

 String description=txtDescription.getText();

 String s="";

 String productCodeFound="";

 byte[] bytes;

 try(RandomAccessFile file = new RandomAccessFile(data.filename, "rw"))

 {

 position=100*n + 25;

 file.seek(position);

 bytes = new byte[10];

 file.read(bytes);

 file.close();

 s= new String (bytes);

 productCodeFound=s.trim();

 }

 catch(IOException e)

 {

 JOptionPane.showMessageDialog(addRecord.this, "File error");

 }

 productCodeEntered=String.format("%-10s", productCodeEntered);

 category=String.format("%-10s", category);

 description=String.format("%-70s", description);

468 Java Programming for A-level Computer Science

We will now check whether a product code is already present at the calculated file location. If not,

then the code written earlier will be used to store the new record in the main file. However, if the

location is already occupied then the record will be added instead to the overflow file.

 productCodeEntered=String.format("%-10s", productCodeEntered);
 category=String.format("%-10s", category);
 description=String.format("%-70s", description);
 String productRecord=productCodeEntered+category+description;
 productRecord=productRecord.substring(0, 90);

 if (productCodeFound.length()<1)
 {

 try(RandomAccessFile file = new RandomAccessFile(data.filename, "rw"))
 {
 position=100*n + 25;
 file.seek(position);
 file.write(productRecord.getBytes());
 file.close();
 JOptionPane.showMessageDialog(addRecord.this, "Record saved");
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(addRecord.this, "File error");
 }

 }
 else
 {
 String message ="Hash value: "+n+"\n"+productCodeEntered;
 message+="\nLocation occupied. Saving in overflow area.";
 JOptionPane.showMessageDialog(addRecord.this,message);
 try(RandomAccessFile file = new RandomAccessFile(data.overflow, "rw"))
 {
 position=(int) file.length();
 file.seek(position);
 file.write(productRecord.getBytes());
 file.close();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(addRecord.this, "File error");
 }
 }

 txtProductCode.setText("");
 txtDescription.setText("");
 }

Run the program. Click the 'Refresh file display' button to view the records in the random access
file. Select one of the current records:

 Chapter 16: Random access files 469

Devise a product code which will generate the same hash value. Click the 'Add record' menu option,
then enter a product with this code.

Use Windows Explorer to locate the overflow.dat file in the randomAccess project folder, then open
the file with a text editor. Check that the additional record has been saved correctly.

Close the program windows and return to the NetBeans editing screen. As with the main file, it
would be helpful for testing the project if the overflow file is displayed on screen when the program
is running. We will arrange for this to happen.

Use the tab above the editing screen to move to the randomAccess.java page. Locate the
displayFile() method, and add a block of code to also output the contents of the overflow.dat file.

 for (int i=0; i<data.fileLocations; i++)
 {
 position=i*100 + 15;
 file.seek(position);
 bytes = new byte[100];
 file.read(bytes);
 s=new String(bytes);
 output += s+"\n";
 }
 file.close();

 output += "\nOVERFLOW AREA\n\n";
 file = new RandomAccessFile(data.overflow, "r");
 int overflowRecords=(int) (file.length()/90);
 for (int i=0; i<overflowRecords; i++)
 {
 position=i*90;
 file.seek(position);
 bytes = new byte[90];
 file.read(bytes);
 s=new String(bytes);
 output += s+"\n";
 }
 file.close();

 txtOutput.setText(output);
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(randomAccess.this, "File error");
 }

470 Java Programming for A-level Computer Science

Run the program. Check that records in both the main file and the overflow area are displayed
correctly. Open the 'Add record' window and add further products. Check that each record is
correctly stored in either the calculated location in the main file, or in the overflow area if a collision
has occurred. Enlarge the text area if necessary, so that the complete records are visible.

Close the program windows and return to the NetBeans editing screen. We will now work on a page
to find and display individual records, with options to edit or delete the record.

Use the tab above the editing window to move to the findRecord.java page. Add components to the
form:

 A label with the caption 'Find record'

 A label with the caption 'Product code'. Place a text field alongside and rename this as

txtProductCode. Also add a button with the caption 'Find record'. Rename the button

as btnFind.

 A label with the caption 'Category'. Place a Combo Box alongside and rename this as

cmbCategory. Set up the categories: Books, Music, Films and Games, as on the

addRecord.java page.

 A label with the caption 'Title / description'. Place a text field alongside and rename this

as txtDescription.

 Buttons with the captions 'Update record' and 'Delete record' Rename the buttons as

btnUpdate and btnDelete.

 Chapter 16: Random access files 471

Use the Source tab to move to the program code view. Add the Java modules at the start of the
program which are needed for file handling, and global variables which will be used in the program.

package randomAccessPackage;

import java.io.IOException;
import java.io.RandomAccessFile;
import javax.swing.JOptionPane;

public class findRecord extends javax.swing.JFrame {

 int n;
 Boolean found;
 String productCodeWanted;
 int overflowLocation;

 public findRecord() {
 initComponents();
 }

Use the Design tab to return to the form layout view, then double click the 'Find record' button to
create a method. Add a line of code to open a find() method, then add the find() method
immediately underneath the button click method.

The method begins by calculating a hash value from the product code entered for the search. If the
product code is valid, the random access file will be opened.

 private void btnFindActionPerformed(java.awt.event.ActionEvent evt) {

 find();

 }

 private void find()
 {
 found=false;
 int position;
 txtDescription.setText("");
 try
 {
 productCodeWanted=txtProductCode.getText();
 n=getHashValue(productCodeWanted);
 if (n<0)
 {
 JOptionPane.showMessageDialog(findRecord.this,
 "Incorrect product code");
 }
 else
 {
 RandomAccessFile file = new RandomAccessFile(data.filename, "r");
 }
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(findRecord.this, "File error");
 }
 }

472 Java Programming for A-level Computer Science

The find() method will require a function to calculate the hash value from the product code. Insert
this function below the find() method.

 private int getHashValue(String productCode)
 {
 int hashValue=-1;
 try
 {
 long code=Long.parseLong(productCode);
 hashValue = (int) (code % data.fileLocations);
 }
 catch (NumberFormatException e)
 {
 JOptionPane.showMessageDialog(findRecord.this, "Incorrect number format");
 }
 return hashValue;
 }

Return to the find() method and add lines of code which will carry out several tasks:

 The hash value n is used to calculate the position of the required record in the file.

 The record at the calculated position is loaded, and the record is split into the productCode,
category and description fields.

 If the product code matches the product code entered for the search, then the record is
displayed. However, the required record may not have been found. It may either be in the
overflow area due to a collision, or not present at all.

 if (n<0)
 {
 JOptionPane.showMessageDialog(findRecord.this,
 "Incorrect product code");
 }
 else
 {
 RandomAccessFile file = new RandomAccessFile(data.filename, "r");

 position=100*n+25;
 file.seek(position);
 byte[] bytes = new byte[90];
 file.read(bytes);
 file.close();
 String s=new String(bytes);
 String productCode=s.substring(0,10); s=s.substring(10);
 String category=s.substring(0,10); s=s.substring(10);
 String description=s.substring(0,70);
 if(productCodeWanted.trim().equals(productCode.trim()))
 {
 found=true;
 txtDescription.setText(description);
 cmbCategory.setSelectedItem(category.trim());
 }

 }
 }
 catch(IOException e)

 Chapter 16: Random access files 473

Run the program. Click the menu to open the 'Find record' page. Enter the product codes for some
items stored in the main file. Details should be displayed; enlarge the text field if necessary so that
the complete title/description is visible. Please note, however, that records stored in the overflow
area are not yet displayed when the product codes are entered. We will correct this problem next.

Close the program windows and return to the editing screen. Return to the find() method and add
lines of code which will search the overflow area for the required product code, then display the
record if it is found.

 catch(IOException e)
 {
 JOptionPane.showMessageDialog(findRecord.this, "File error");
 }

 overflowLocation=-1;
 if (found==false)
 {
 try
 {
 RandomAccessFile file = new RandomAccessFile(data.overflow, "r");
 int recordCount=(int) file.length()/90;
 int i=0;
 while(found==false && i<recordCount)
 {
 position=90*i;
 file.seek(position);
 byte[] bytes = new byte[90];
 file.read(bytes);
 String s=new String(bytes);
 String productCode=s.substring(0,10); s=s.substring(10);
 String category=s.substring(0,10); s=s.substring(10);
 String description=s.substring(0,70);
 if(productCodeWanted.trim().equals(productCode.trim()))
 {
 found=true;
 txtDescription.setText(description);
 cmbCategory.setSelectedItem(category.trim());
 overflowLocation=i;
 }
 i++;
 }
 file.close();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(findRecord.this, "File error");
 }
 }

 }

474 Java Programming for A-level Computer Science

Run the program. Repeat the previous tests, and check that it is now possible to find and display

records from both the main file and the overflow area.

Close the program windows and return to the NetBeans editing screen. We will work next on the

option to update a record.

Use the Design tab to move to the form layout view, then double click the 'Update record' button to

produce a button click method. Add a line of code to call an update() method. Create the update()

method immediately underneath, and add lines of code which will collect the data entries for the

updated record and package these into the correct fixed length record format.

 private void btnUpdateActionPerformed(java.awt.event.ActionEvent evt) {

 update();

 }

 private void update()
 {
 String category =(String) cmbCategory.getSelectedItem();
 String description=txtDescription.getText();
 String productCode=String.format("%-10s", productCodeWanted);
 category=String.format("%-10s", category);
 description=String.format("%-70s", description);
 String s = productCode+ category + description;
 s=s.substring(0, 90);
 }

 Chapter 16: Random access files 475

As in the find() method, we will need to treat records differently for the main file and overflow area

when carrying out the update. When the update method is called, the values of two global variables

have already been set:

 n: the hash value for the location where the record would be stored if it is in the main file.

 overflowLocation: gives the position of the record in the overflow file if it is stored there.

 However, this variable will have a value of -1 if the record is not stored in the

 overflow area, but stored instead in the main file.

We will first deal with the case where the record is in the main file, and overflowLocation has a

value of -1. Add lines of code to update the main file entry.

 private void update()
 {
 String category =(String) cmbCategory.getSelectedItem();
 String description=txtDescription.getText();
 String productCode=String.format("%-10s", productCodeWanted);
 category=String.format("%-10s", category);
 description=String.format("%-70s", description);
 String s = productCode+ category + description;
 s=s.substring(0, 90);

 if (overflowLocation<0)
 {
 try(RandomAccessFile file = new RandomAccessFile(data.filename, "rw"))
 {
 int position=100*n + 25;
 file.seek(position);
 file.write(s.getBytes());
 file.close();
 JOptionPane.showMessageDialog(findRecord.this, "Record updated");
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(findRecord.this, "File error");
 }
 }
 txtProductCode.setText("");
 txtDescription.setText("");

 }

Run the program. Go to the 'Find record' page, then make a change to the title / description field of

one of the products in the main file. Check that this is updated correctly.

476 Java Programming for A-level Computer Science

Close the program windows and return to the editing screen. Locate the update() method. We will

now insert the lines of code needed to update records in the overflow area.

 catch(IOException e)
 {
 JOptionPane.showMessageDialog(findRecord.this, "File error");
 }

 }

 else
 {
 try(RandomAccessFile file = new RandomAccessFile(data.overflow, "rw"))
 {
 int position=90* overflowLocation;
 file.seek(position);
 file.write(s.getBytes());
 file.close();
 JOptionPane.showMessageDialog(findRecord.this, "Record updated");
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(findRecord.this, "File error");
 }
 }

 txtProductCode.setText("");
 txtDescription.setText("");
 }

Run the program. Go to the 'Find record' page and repeat the test of the update method, this time

choosing a record stored in the overflow area. Check that the record is updated correctly.

Close the program windows and return to the NetBeans editing screen. You may have noticed that it

is possible to update the category and title / description fields of the records, but not the product

code. This was a deliberate design decision, to avoid upsetting the file structure. If the user enters

an incorrect product code, they must delete the complete record and re-enter it correctly. We will

work on the delete function next.

 Chapter 16: Random access files 477

Use the Design tab to move to the form layout view, then double click the 'Delete record' button to

create a method. We will add a line of code to the button click method to call deleteRecord(), then

insert the deleteRecord() method immediately below the button click method.

We begin the delete() method by asking the user to confirm that they wish to delete the record.

Please note that the line beginning

 int response = JOptionPane.showConfirmDialog(…

should be entered as a single line of code with no line breaks.

The program checks whether the record to be deleted is in a main file location. If so, the record will

be replaced at that position by a blank record.

 private void btnDeleteActionPerformed(java.awt.event.ActionEvent evt) {

 deleteRecord();

 }

 private void deleteRecord()
 {
 String s="";
 s=String.format("%-90s", s);
 int response = JOptionPane.showConfirmDialog(null,
 "Are you sure you want to delete this record?", "Confirm",
 JOptionPane.YES_NO_OPTION, JOptionPane.QUESTION_MESSAGE);
 if (response == JOptionPane.YES_OPTION)
 {
 if (overflowLocation<0)
 {
 try(RandomAccessFile file = new RandomAccessFile(data.filename, "rw"))
 {
 int position=100*n + 25;
 file.seek(position);
 file.write(s.getBytes());
 file.close();
 JOptionPane.showMessageDialog(findRecord.this, "Record deleted");
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(findRecord.this, "File error");
 }
 }
 txtProductCode.setText("");
 txtDescription.setText("");
 }
 }

Run the program. Click the 'Refresh file display' button to show list the records in the files. Click the

'Find record' menu option, then select one of the records stored in the main file. Click the 'Delete

record' button, then confirm to delete.

478 Java Programming for A-level Computer Science

Refresh the listing and check that the record has been deleted correctly.

Return to the NetBeans editing screen, and locate the delete() method. Add the remaining code

needed to delete a record from the overflow area.

 catch(IOException e)
 {
 JOptionPane.showMessageDialog(findRecord.this, "File error");
 }
 }

 else
 {
 try(RandomAccessFile file = new RandomAccessFile(data.overflow, "rw"))
 {
 int position=90* overflowLocation;
 file.seek(position);
 file.write(s.getBytes());
 file.close();
 JOptionPane.showMessageDialog(findRecord.this, "Record deleted");
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(findRecord.this, "File error");
 }
 }

 txtProductCode.setText("");
 txtDescription.setText("");

Run the program. Repeat the test, this time deleting a record from the overflow area.

 Chapter 16: Random access files 479

Close the program windows and return to the NetBeans editing screen.

The program that we have created is working correctly, but you might have identified a serious
problem with the design. If many more records are added, the main random access storage area will
be filled and further records will be stored as overflow. The overflow area uses a simple unsorted
file, so has to be searched by the linear search method. For records on disc, this will be very slow.
The solution is to restructure the file with a larger number of file locations, then reallocate the
existing records in the main file and overflow area using a different hash function. We will do this
now…

Go to the Projects window at the top left of the editing screen and right-click on the

randomAccessPackage folder. Select New / JFrame Form. Give the Class Name as restructure,

and leave the Package name as randomAccessPackage.

Click the Finish button to return to the editing screen. The new restructure form should appear.

 Right-click on the form and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Set the defaultCloseOperation property to 'HIDE'.

We will now link the new page into the menu system. Use the tab above the editing window to select
the randomAccess.java page. Click the Design tab to move to the form layout view.

Select a Menu component from the palette, then drag and drop this onto the Menu Bar. Right-click to
change the text caption to 'Restructure file'. Rename the Menu as menuRestructure.

With the 'Restructure file' menu selected, go to the Properties window and click the Events tab.
Locate the mouseClicked event, and accept menuRestructureMouseClicked from the drop down list.
Add a line of code to the mouseClicked() method to open the restructure form.

 private void menuRestructureMouseClicked(java.awt.event.MouseEvent evt) {

 new restructure().setVisible(true);

 }

480 Java Programming for A-level Computer Science

Run the program. Select the 'Restructure file' menu option and check that the new window opens
correctly. It should be possible to close this window by clicking the cross icon without closing the
main program.

 Close the program and return to the NetBeans editing screen. Click the tab above the editing
window to go to the restructure.java page. Add components to the form:

 A label with the caption 'Number of memory locations'. Place a text field alongside and

rename this as txtLocationsWanted.

 A button with the caption 'Restructure random access file'. Rename the button as

btnRestructure.

Our object will now be to increase the number of memory locations in the main random access
storage area, so that the number of overflow records is reduced and the access times are improved.
There are currently 10 random access locations. If, for example, the number was increased to 20
then some records in the overflow area could now move to the main file:

Location Product code

0 889210

1 795291

2 658732

3 921783

4 216494

5 278445

6

7 813387

8 692318

9 567139

overflow

Product code

294735

671120

783910

672297

Location Product code

0 671120

1

2

3 921783

4

5 278445

6

7 813387

8

9

10 889210

11 795291

12 658732

13

14 216494

15 294735

16

17 672297

18 692318

19 567139

overflow

Product code

783910

889210

795291

658732

921783

216494

278445

813387

692318

567139

294735

671120

783910

672297

 Chapter 16: Random access files 481

Restructuring the file involves several steps:

 We will copy all the original records from the random access file and overflow area into a

temporary file.

 A new empty random access file will be created with the required number of storage

locations.

 The records in the temporary file will then be reallocated to the larger random access file

using a new hash function, for example:

 <product code> MOD 20

Any collisions will be handled by moving the records to a new overflow area.

Begin the programming by double clicking the 'Restructure random access file' button to create a

method. Add a line of code to call a restructure() method, then add this method immediately

underneath. Please note that the line beginning 'int response = JOptionPane.showConfirmDialog '

should be entered as a single line of code with no line breaks.

The restructure() method begins by collecting the number of storage locations required, then asks

the user to confirm that they wish to restructure the file. We then create an empty temporary file

into which the existing records can be copied.

 private void btnRestructureActionPerformed(java.awt.event.ActionEvent evt) {

 restructure();

 }

 private void restructure()
 {
 int position;
 int overflowLocations;

 String s=txtLocationsWanted.getText();
 int locationsWanted=Integer.parseInt(s);
 int response = JOptionPane.showConfirmDialog(null,
 "Are you sure you want to restructure the file with "+
 locationsWanted+" locations?", "Confirm", JOptionPane.YES_NO_OPTION,
 JOptionPane.QUESTION_MESSAGE);
 if (response == JOptionPane.YES_OPTION)
 {
 try
 {
 RandomAccessFile mainFile = new RandomAccessFile(data.filename, "r");
 RandomAccessFile overflowFile = new RandomAccessFile(data.overflow, "r");
 RandomAccessFile tempFile = new RandomAccessFile("temp.dat", "rw");
 tempFile.setLength(0);
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(restructure.this, "File error");
 }
 }
 }

Scroll up to the top of the program listing and add the Java modules which will be needed for file

handling and to create message boxes, as shown below.

482 Java Programming for A-level Computer Science

package randomAccessPackage;

import java.io.IOException;
import java.io.RandomAccessFile;
import javax.swing.JOptionPane;

public class restructure extends javax.swing.JFrame {

Run the program. Select the 'Restructure file' menu option, then enter a number of memory
locations for the new file. Click the button and check that a confirm message is displayed correctly.

Close the program windows to return to the NetBeans editing screen.

Add the lines of code below which use a loop to obtain each of the product records from the current
main file. The records are then copied into the temporary file.

 try
 {
 RandomAccessFile mainFile = new RandomAccessFile(data.filename, "r");
 RandomAccessFile overflowFile = new RandomAccessFile(data.overflow, "r");
 RandomAccessFile tempFile = new RandomAccessFile("temp.dat", "rw");
 tempFile.setLength(0);

 for (int i=0; i<data.fileLocations; i++)
 {
 position=100*i+25;
 mainFile.seek(position);
 byte[] bytes = new byte[90];
 mainFile.read(bytes);
 String record=new String(bytes);
 s=record.trim();
 if (s.length() >0)
 {
 tempFile.write(bytes);
 }
 }
 mainFile.close();

 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(restructure.this, "File error");
 }

Run the program. Use the 'Restructure file' menu option, then enter a number of storage locations
for the new file. Click the button and confirm to continue with the restructuring.

Use Windows Explorer to locate the temp.dat file in the randomAccess project folder. Open the file
using a text editing application such as Notepad.

 Chapter 16: Random access files 483

Check that the records currently in the main file are listed.

Close the program windows and return to the NetBeans editing screen. Add lines of code to the
restructure() method which will also add records from the overflow area to the temp.dat file.

 for (int i=0; i<data.fileLocations; i++)
 {
 position=100*i+25;
 mainFile.seek(position);
 byte[] bytes = new byte[90];
 mainFile.read(bytes);
 String record=new String(bytes);
 s=record.trim();
 if (s.length() >0)
 {
 tempFile.write(bytes);
 }
 }
 mainFile.close();

 overflowLocations=(int) overflowFile.length()/90;
 for (int i=0; i<overflowLocations; i++)
 {
 position=90*i;
 overflowFile.seek(position);
 byte[] bytes = new byte[90];
 overflowFile.read(bytes);
 String record=new String(bytes);
 s=record.trim();
 if (s.length() >0)
 {
 tempFile.write(bytes);
 }
 }
 overflowFile.close();

 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(restructure.this, "File error");
 }

484 Java Programming for A-level Computer Science

Run the program. As before, use the 'Restructure file' menu option then enter a number of storage
locations for the new file. Click the button and confirm to continue with the restructuring.

Use Windows Explorer to locate the temp.dat file in the randomAccess project folder. Open the file
using a text editing application. Check that all records from the overflow area have now been added
to the file.

Close the program windows and return to the NetBeans editing screen. We will now complete the
remaining stages of the strategy to restructure the file.

Begin by adding lines of code to the restructure() method which will:

 Update the number of storage locations in the data class global variable, so that this value
will be available to other parts of the program.

 Call a createMainFile() method which will rebuild an empty random access file with the
required number of storage locations.

 Create a new empty overflow file.

 for (int i=0; i<overflowLocations; i++)
 {
 position=90*i;
 overflowFile.seek(position);
 byte[] bytes = new byte[90];
 overflowFile.read(bytes);
 String record=new String(bytes);
 s=record.trim();
 if (s.length() >0)
 {
 tempFile.write(bytes);
 }
 }
 overflowFile.close();

 data.fileLocations=locationsWanted;
 createMainFile();
 mainFile=new RandomAccessFile(data.filename, "rw");
 overflowFile = new RandomAccessFile(data.overflow, "rw");
 overflowFile.setLength(0);

 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(restructure.this, "File error");
 }

 Chapter 16: Random access files 485

Add the createMainFile() method immediately underneath the restructure() method.

 private void createMainFile()
 {
 int position;
 try (RandomAccessFile file = new RandomAccessFile(data.filename, "rw"))
 {
 file.setLength(0);
 String s = "locations "+data.fileLocations;
 s=String.format("%-15s", s);
 file.write(s.getBytes());
 for (int i=0; i<data.fileLocations; i++)
 {
 String locationNumber=String.format("%-4s", i);
 s = "***"+locationNumber+"** ";
 s=String.format("%-100s", s);
 position=i*100+15;
 file.seek(position);
 file.write(s.getBytes());
 }
 file.close();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(restructure.this, "File error");
 }
 }

Return to the restructure() method and add lines of code which will access each record from the
temp.dat file, ready to allocate it to a location in the new random access file.

 data.fileLocations=locationsWanted;
 createMainFile();
 mainFile=new RandomAccessFile(data.filename, "rw");
 overflowFile = new RandomAccessFile(data.overflow, "rw");
 overflowFile.setLength(0);

 int tempLocations=(int) tempFile.length()/90;
 for (int i=0; i<tempLocations; i++)
 {
 position=90*i;
 tempFile.seek(position);
 byte[] bytes = new byte[90];
 tempFile.read(bytes);
 String oldRecord=new String(bytes);
 s=oldRecord.trim();
 if (s.length() >0)
 {
 String productCode=oldRecord.substring(0,6).trim();
 int n=getHashValue(productCode);
 }
 }
 tempFile.close();
 JOptionPane.showMessageDialog(restructure.this, "File restructured");

 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(restructure.this, "File error");

486 Java Programming for A-level Computer Science

A function will be needed to calculate the hash value for each record, using the new number of
storage locations. Add the method getHashValue() immediately below the restructure() method.

 private int getHashValue(String productCode)
 {
 int hashValue=-1;
 try
 {
 long code=Long.parseLong(productCode);
 hashValue = (int) (code % data.fileLocations);
 }
 catch (NumberFormatException e)
 {

 }
 return hashValue;
 }

Return to the restructure() method. Add lines of code to store the records in the new main file, or in
the new overflow area if a collision occurs.

 for (int i=0; i<tempLocations; i++)
 {
 position=90*i;
 tempFile.seek(position);
 byte[] bytes = new byte[90];
 tempFile.read(bytes);
 String oldRecord=new String(bytes);
 s=oldRecord.trim();
 if (s.length() >0)
 {
 String productCode=oldRecord.substring(0,6).trim();
 int n=getHashValue(productCode);

 position=n*100 + 25;
 mainFile.seek(position);
 bytes = new byte[90];
 mainFile.read(bytes);
 String newFileEntry=new String(bytes);
 String productCodeFound=newFileEntry.substring(0,6);
 productCodeFound=productCodeFound.trim();
 if (productCodeFound.length()<1)
 {
 position=100*n + 25;
 mainFile.seek(position);
 mainFile.write(oldRecord.getBytes());
 }
 else
 {
 position=(int) overflowFile.length();
 mainFile.seek(position);
 overflowFile.write(oldRecord.getBytes());
 }

 }
 }
 tempFile.close();
 JOptionPane.showMessageDialog(restructure.this, "File restructured");

 Chapter 16: Random access files 487

We have now completed the restructuring. Run the program. As before, use the 'Restructure file'
menu option then enter 50 as the number of storage locations for the new file. Click the button and
confirm to continue with the restructuring.

Return to the main program page and refresh to file display. Check that a random access file with
the 50 storage locations has been created, and that the records have been correctly allocated.

Return to the 'Restructure file' window, and now select 100 storage locations. Check that the file is
again correctly restructured.

